社会机器人的快速发展刺激了人类运动建模,解释和预测,主动碰撞,人类机器人相互作用和共享空间中共同损害的积极研究。现代方法的目标需要高质量的数据集进行培训和评估。但是,大多数可用数据集都遭受了不准确的跟踪数据或跟踪人员的不自然的脚本行为。本文试图通过在语义丰富的环境中提供运动捕获,眼睛凝视跟踪器和板载机器人传感器的高质量跟踪信息来填补这一空白。为了诱导记录参与者的自然行为,我们利用了松散的脚本化任务分配,这使参与者以自然而有目的的方式导航到动态的实验室环境。本文介绍的运动数据集设置了高质量的标准,因为使用语义信息可以增强现实和准确的数据,从而使新算法的开发不仅依赖于跟踪信息,而且还依赖于移动代理的上下文提示,还依赖于跟踪信息。静态和动态环境。
translated by 谷歌翻译
机器人越来越多地部署在与人类共享的空间中,包括家庭环境和工业环境。在这些环境中,人与机器人之间的相互作用(HRI)对于安全性,可读性和效率至关重要。 HRI的一个关键因素是信任,它调节了系统的接受。已显示拟人化可以调节机器人的信任发展,但工业环境中的机器人通常不是拟人化的。我们在工业环境中设计了一个简单的互动,在该环境中,拟人化模拟驱动器(ARMOD)机器人模拟了自动驾驶汽车(AGV)。该任务由与AGV的人类交叉路径组成,有或不带有狭窄的走廊上安装在顶部。人类和系统在越过路径时需要协商轨迹,这意味着人必须关注机器人的轨迹,以避免与它发生碰撞。在存在ARMOD的情况下,报告的信任评分有显着的增长,表明拟人化机器人的存在足以调节信任,即使在有限的相互作用中,就像我们在这里提出的相互作用一样。
translated by 谷歌翻译
Modeling lies at the core of both the financial and the insurance industry for a wide variety of tasks. The rise and development of machine learning and deep learning models have created many opportunities to improve our modeling toolbox. Breakthroughs in these fields often come with the requirement of large amounts of data. Such large datasets are often not publicly available in finance and insurance, mainly due to privacy and ethics concerns. This lack of data is currently one of the main hurdles in developing better models. One possible option to alleviating this issue is generative modeling. Generative models are capable of simulating fake but realistic-looking data, also referred to as synthetic data, that can be shared more freely. Generative Adversarial Networks (GANs) is such a model that increases our capacity to fit very high-dimensional distributions of data. While research on GANs is an active topic in fields like computer vision, they have found limited adoption within the human sciences, like economics and insurance. Reason for this is that in these fields, most questions are inherently about identification of causal effects, while to this day neural networks, which are at the center of the GAN framework, focus mostly on high-dimensional correlations. In this paper we study the causal preservation capabilities of GANs and whether the produced synthetic data can reliably be used to answer causal questions. This is done by performing causal analyses on the synthetic data, produced by a GAN, with increasingly more lenient assumptions. We consider the cross-sectional case, the time series case and the case with a complete structural model. It is shown that in the simple cross-sectional scenario where correlation equals causation the GAN preserves causality, but that challenges arise for more advanced analyses.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
Scientists and philosophers have debated whether humans can trust advanced artificial intelligence (AI) agents to respect humanity's best interests. Yet what about the reverse? Will advanced AI agents trust humans? Gauging an AI agent's trust in humans is challenging because--absent costs for dishonesty--such agents might respond falsely about their trust in humans. Here we present a method for incentivizing machine decisions without altering an AI agent's underlying algorithms or goal orientation. In two separate experiments, we then employ this method in hundreds of trust games between an AI agent (a Large Language Model (LLM) from OpenAI) and a human experimenter (author TJ). In our first experiment, we find that the AI agent decides to trust humans at higher rates when facing actual incentives than when making hypothetical decisions. Our second experiment replicates and extends these findings by automating game play and by homogenizing question wording. We again observe higher rates of trust when the AI agent faces real incentives. Across both experiments, the AI agent's trust decisions appear unrelated to the magnitude of stakes. Furthermore, to address the possibility that the AI agent's trust decisions reflect a preference for uncertainty, the experiments include two conditions that present the AI agent with a non-social decision task that provides the opportunity to choose a certain or uncertain option; in those conditions, the AI agent consistently chooses the certain option. Our experiments suggest that one of the most advanced AI language models to date alters its social behavior in response to incentives and displays behavior consistent with trust toward a human interlocutor when incentivized.
translated by 谷歌翻译
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. A parallel-autonomous system acts as a guardian that significantly enhances the robustness and safety of flight operations in challenging circumstances. Here, we propose an air-guardian concept that facilitates cooperation between an artificial pilot agent and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot agent and a control system based on perceived differences in their attention profile. The attention profiles are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm. The guardian agent is trained via reinforcement learning in a fixed-wing aircraft simulated environment. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. If the attention map of the pilot and the guardian do not align, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. We demonstrate the effectivness of our methods in simulated flight scenarios with a fixed-wing aircraft and on a real drone platform.
translated by 谷歌翻译
As demand for large corpora increases with the size of current state-of-the-art language models, using web data as the main part of the pre-training corpus for these models has become a ubiquitous practice. This, in turn, has introduced an important challenge for NLP practitioners, as they are now confronted with the task of developing highly optimized models and pipelines for pre-processing large quantities of textual data, which implies, effectively classifying and filtering multilingual, heterogeneous and noisy data, at web scale. One of the main components of this pre-processing step for the pre-training corpora of large language models, is the removal of adult and harmful content. In this paper we explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data. We first show how traditional methods in harmful content detection, that seemingly perform quite well in small and specialized datasets quickly break down when confronted with heterogeneous noisy web data. We then resort to using a perplexity based approach but with a twist: Instead of using a so-called "clean" corpus to train a small language model and then use perplexity so select the documents with low perplexity, i.e., the documents that resemble this so-called "clean" corpus the most. We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold. This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity and will also allow us to obtain higher precision than with the traditional classification methods for detecting adult and harmful content.
translated by 谷歌翻译
Quantization methods reduce the number of bits required to represent each parameter in a model, trading accuracy for smaller memory footprints and inference latencies. However, the final model size depends on both the number of parameters of the original model and the rate of compression. For example, a 30B 8-bit model and a 60B 4-bit model have the same number of bits but may have very different zero-shot accuracies. In this work, we study this trade-off by developing inference scaling laws of zero-shot performance in Large Language Models (LLMs) to determine the bit-precision and model size that maximizes zero-shot performance. We run more than 35,000 zero-shot experiments with 16-bit inputs and k-bit parameters to examine which quantization methods improve scaling for 3 to 8-bit precision at scales of 19M to 66B parameters across the LLM families BLOOM, OPT, NeoX/Pythia, and GPT-2. We find that it is challenging to improve the bit-level scaling trade-off, with the only improvements being the use of a small block size -- splitting the parameters into small independently quantized blocks -- and the quantization data type being used (e.g., Int vs Float). Overall, our findings show that 4-bit precision is almost universally optimal for total model bits and zero-shot accuracy.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The increasing importance of both deep neural networks (DNNs) and cloud services for training them means that bad actors have more incentive and opportunity to insert backdoors to alter the behavior of trained models. In this paper, we introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights using independent vector analysis (IVA) followed by a machine learning classifier. In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data, being applicable across domains, operating with a wide range of network architectures, not assuming the nature of the triggers used to change network behavior, and being highly scalable. We discuss the detection pipeline, and then demonstrate the results on two computer vision datasets regarding image classification and object detection. Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
translated by 谷歌翻译